On Accelerationism—Decolonizing Technoscience through Critical Pedagogy

ALEXANDER MEANS

Department of Social and Psychological Foundations of Education, SUNY, Buffalo State
Email: alexmeans1@gmail.com

We need to revive the argument that was traditionally made for post-capitalism: not only is capitalism an unjust and perverted system, but it is also a system that holds back progress. Our technological development is being suppressed by capitalism, as much as it has been unleashed. Accelerationism is the basic belief that these capacities can and should be let loose by moving beyond the limitations imposed by capitalist society.

-Manifesto for an Accelerationist Politics (Williams and Srnicek, 2013)

The Manifesto for an Accelerationist Politics (MAP) begins with the now numbingly routine observation that the world is facing a number of impending catastrophes stemming from the degradation of the planetary bios and the unfettered expansion of global capitalism. What makes the MAP unique from scores of other meditations on impending “cataclysm” is that it suggests contemporary crises are rooted largely in a failure of radical-progressive imagination. It argues that the left has simply not been able to pose a credible alternative to neoliberalism. This is because progressive politics have failed to offer alternative visions of the future and have instead stalled out, either advocating for a nostalgic return to Keynesian era social democracy that is neither possible nor desirable - (Fordism was always predicated on class, race, and gender hierarchies as well as an international system of imperialism and colonies -), and/or retreating into a horizontal politics of neo-primitive localism that is incapable of adequately dealing with real historical and political conditions, such as imagining global governance structures needed to address issues like demilitarization and climate change.

The MAP argues that the ideological strength of neoliberalism has been its success in presenting itself as synonymous with modernization. However, neoliberalism presents an image of modernity that it is incapable of generating. Instead of liberating individual creativities and innovative freedoms through the abstract universalism of the market, neoliberalism places fetters on social and technological development:
Capitalism has begun to constrain the productive forces of technology, or at least, direct them towards needlessly narrow ends. Patent wars and idea monopolisation are contemporary phenomena that point to both capital’s need to move beyond competition, and capital’s increasingly retrograde approach to technology. The properly accelerative gains of neoliberalism have not led to less work or less stress. And rather than a world of space travel, future shock, and revolutionary technological potential, we exist in a time where the only thing which develops is marginally better consumer gadgetry. Relentless iterations of the same basic product sustain marginal consumer demand at the expense of human acceleration.

The MAP advocates for an alternative modernity driven by a politics of acceleration. This entails unleashing the revolutionary and productive potential of capitalist technoscience in order to serve the commons. The MAP states, “an accelerationist politics seeks to preserve the gains of late capitalism while going further than its value system, governance structures, and mass pathologies will allow”. This includes repurposing the technological platforms of neoliberalism such as new digitally integrated systems, algorithmic and big data capacities, artificial intelligence (AI), and emergent forms of social production and communication in order to construct post-capitalist futures.

The MAP’s call for acceleration thus contains some affinity with contemporary strands of techno-utopian thought that is worth reflecting on. For instance, in his new book the Zero Marginal Cost Society, Jeremy Rifkin (2014) argues that, “the capitalist era is passing,” and that “a new economic paradigm, The Collaborative Commons—is rising in its wake” (p. 1). This transition is being enabled by the Internet of Things (IoT), which according to Rifkin, is radically accelerating productivity, creating “smart” twenty-first century infrastructure, and reducing the marginal cost of producing goods and services to zero:

The Internet of Things will connect everything with everyone in an integrated global network. People, machines, natural resources, production lines, logistics networks, consumption habits, recycling flows, and virtually every other aspect of economic and social life will be linked via sensors to the IoT platform, continually feeding Big Data to every node—businesses, homes, vehicles—moment to moment in real time. Big Data in turn will be processed with advanced analytics, transformed into predictive algorithms, and programmed into automated systems to improve thermodynamic efficiencies and dramatically increase productivity, and reduce the range and cost of producing and delivering a range of goods and services at near zero cost across the entire economy. (p. 11)
According to Rifkin, the IoT, combined with the rise of maker culture, open access software, peer-to-peer networks, digital currencies such as Bitcoin, social media platforms, 3Dprinting, crowdsourcing, and other digital innovations are slowly beginning to undermine corporate profits and intellectual property. He observes:

Hundreds of millions of people are already transferring bits and pieces of their economic life from capitalist markets to the global Collaborative Commons. Prosumers are not only sharing and producing their own information, entertainment, green energy, 3D-printed goods, and massive open online courses on the Collaborative Commons at near zero marginal cost. They are also sharing cars, homes, and even clothes with one another via social media sites, rentals, redistribution clubs, and cooperatives, at low or near zero marginal cost. (p. 19)

Rifkin argues that by midcentury the collaborative commons will eclipse both capitalism and the bureaucratic state as the dominant organizing frame for human existence and global civil society. The problem with Rifkin’s analysis, along with other similar expressions of techno-utopian thought, is not that the future he describes is necessarily undesirable, or that the IoT does not pose interesting challenges to the reproductive potential of capital, but that it completely ignores questions of power and antagonism.

IoT-enabled technologies such as open access software, social media platforms, big data, network infrastructures, cloud computing, predictive analytics, and artificial intelligence (AI) occupy a central node within broader conflicts over the commons. On the one hand, as Rifkin suggests, these technologies are indeed generating possibilities for new forms of collaboration, value, creativity, labor, and technological capacity that evade and sometimes subvert the dominant value paradigm of capital and its proprietary relations. For instance, peer-to-peer networks like Bit Torrent and digital reproduction of intellectual property via open sourcing are challenging profit models based on patent and copyright monopolies, while digital currencies like Bitcoin have opened up alternative forms of commerce that challenge, however minimally, state and transnational banking controls on currency and exchange. Moreover, Twitter, Facebook, and other forms of communicative media have played an important role in public pedagogy and in oppositional movements in recent years from Chile, Iran, Quebec, Tunisia, Spain, New York, to Hong Kong. On the other hand, however, corporate and state entities such as Google, Amazon, Facebook, and national security agencies (e.g. the NSA PRISM program and $1.5 billion Utah datacenter) are erecting legal and extralegal systems to contain and appropriate these energies for the

Purpose of private accumulation and social control. A contradiction arises here as these systems of control erode and/or place fetters on the productive potential of the commons, which not only undermines social value but also potential productive value for capital. As Silvia Federici (2011) observes, this is why the commons has emerged as a prominent discourse within global policy making, as there is growing recognition even among capitalist elites that the total commodification of life eventually degrades the land and labor that capital depends on for its own reproduction.

What we can observe is thus a struggle over the commons that internalizes a multiplicity of capitalist and non-capitalist values and value conflicts. Such conflicts immanent to the IoT, should disabuse us of techno-utopian fantasies of inevitable progress and frictionless transcendence. While IoT technologies may enable the intensification of non-capitalist aspects of the commons, this does not mean that this intensification carries with it an inevitable teleological trajectory that will push beyond capitalism. On the contrary, rather than creating a friction-free global commons based on sharing and the triumph of social value over exchange value, as Rifkin suggests, IoT technologies, in so far as they are squarely integrated into the circuits of global capitalism and the endless commodification of nature and society, can just as readily be viewed as implicated in the perpetuation of contemporary forms of authoritarianism, fundamentalism, imperialism, state repression, social exclusion, and ecological devastation (Harvey, 2014; Klein, 2014; Sassen, 2014).

In contrast to the techno-utopian optimism of those like Rifkin, the MAP rejects teleological determinations. It argues that the left needs to work to establish “sociotechnical hegemony” and that the value structure of science, engineering, design, innovation, and technology has to be consciously reconstructed from one subsumed by endless pursuit of surplus value, to an altermodern value structure rooted in social value. This can only be achieved through diversified forms of social and political struggle. The MAP orients these struggles squarely within the Enlightenment goal of achieving collective self-mastery. This includes recognition of the need for vertically oriented forms of institutional and scientific planning to effectively enact a global commons in a world of increasing social and technological complexity and abstraction. At the same time, the MAP embraces anarchist critiques of authority and recognizes the need for horizontal arrangements and open

democratic institutions within contexts of local self-determination. The issue for the MAP is how can technological processes and modes of democratic authority be reconstituted at multiple scales:

Democracy cannot be defined simply by its means — not via voting, discussion, or general assemblies. Real democracy must be defined by its goal — collective self-mastery. This is a project which must align politics with the legacy of the Enlightenment, to the extent that it is only through harnessing our ability to understand ourselves and our world better (our social, technical, economic, psychological world) that we can come to rule ourselves. We need to posit a collectively controlled legitimate vertical authority in addition to distributed horizontal forms of sociality, to avoid becoming the slaves of either a tyrannical totalitarian centralism or a capricious emergent order beyond our control. The command of The Plan must be married to the improvised order of The Network.

What, if anything, does all this mean for thinking about education in relation to science and technology? Let me begin by saying that the MAP offers a necessary and provocative set of arguments concerning a radical-progressive revalorization of technoscience that pushes beyond reductive forms of both left fatalism as well as techno-utopian optimism. However, it is also deeply flawed on a number of levels. First, acceleration itself is a problematic concept. The idea that we should simply accelerate the technoscientific potential of capitalism in order to move beyond capitalism is ethically and pragmatically questionable in light of present historical conditions. It is unclear how technoscientific acceleration would avoid contributing to capitalism’s own current acceleration of resource depletion, species extinction, social exclusion, and degradation of lives and livelihoods. Perhaps, and I think this is really the core issue, the accelerationists, like techno-utopians, believe that these problems can simply be resolved through accelerating technological fixes such as through the mobilization of digitally networked “smart systems” and geoengineering projects (for instance blasting sulfur into the air in order to cool the planet’s surface temperature to stave off climate change). However, technoscience cannot solve problems that are profoundly social and political in their constitution. Thus technoscience has to be wielded alongside a mix of social, economic, and political innovations. Among other tasks, these innovations must work to decelerate rather than accelerate the global political economy, from a model based on endless growth and appropriation of commons, to a no/low growth model, in order to bring it in line with flourishing and sustainable nature-society relations (Klein, 2014; Moore, 2011).
Second, the MAP replays some of the most troubling and destructive aspects of modern thinking in that it remains completely within what Donna Haraway (1991) once referred to as the “God’s Eye” view—a Eurocentric epistemological foundation based in patriarchal fantasies of mastery that screens out the knowledge and traditions of the oppressed, the colonized, women, and Indigenous peoples. This is not only a form of material and symbolic violence in and of itself, but it is also reductive and narrow. Remaining stuck within a Eurocentric frame means that accelerationism is a myopic way of imagining alternative modernities, which require among other things, deep engagement with multiple epistemological traditions, ways of being, and knowing.

The question becomes: How can we imagine a biopolitics of technoscience rooted in values and forms of life that are decolonizing and radically egalitarian? This is precisely where education should be brought back into the discussion. The question that emerges here is not how technoscience can be used to transform education, but how can education be transformed in order to support decolonizing projects that mobilize new technologies such as the IoT in order to construct what Jason Moore has aptly called a post-capitalist “world-ecology” (Moore, 2011). This is where the traditions associated with critical pedagogy have much to offer insofar as they view educational processes, broadly conceived, as central rather than peripheral to politics (Friere, 2000; Giroux, 2011). To begin, critical pedagogy is a non-teleological perspective that views technoscientific purpose and development as historically grounded and radically contingent. This is another way of saying that science and technology are tools that only acquire meaning and efficacy through the social. Second, critical pedagogy views technoscientific development as inherently (bio)-political—that is, it is rooted in eradicable class, race, and gender antagonisms as well as conflicts over resources, rights, values, labor, and the ethical content of living and being. Third, and related, critical pedagogy asserts that conflicts over technoscientific development are not only embedded in material relations of power (capital and its state forms), but are also centrally inscribed in consciousness and thus implicated in diversified contestations over ideology and subjectivity. Lastly, critical pedagogy views schools, universities, and media as critical public spheres that are always embedded in power relations, but are nonetheless imbued with the potential to promote various forms of critical literacy and democratic agency.
These perspectives on critical pedagogy compliment many of the arguments raised in the MAP. However, critical pedagogy does not view attainment of altermodern futures through acceleration, but rather through the development of various decolonizing forms of technoscientific literacy. These literacies are aimed not at the inherently unpredictable acceleration of technology (which is surely as capable of producing new fascisms as it is forms of emancipation), but generating the capacities to subordinate technoscience and its value structure to the enactment of a global commons rich with cultural variation and contestation (De Lissovoy et al, 2014). As the MAP rightly suggests, this would necessarily include constructing new vertically integrated institutional arrangements, reforming the media, building new intellectual infrastructures, using enlightened scientific planning, as well as constituting horizontally distributed forms of democratic authority (and cultural knowledge) to repurpose and revalorize technoscience for emancipatory ends (including dramatically decelerating rather than accelerating various forms of technology such as nuclear power and hydraulic fracturing, to name just two examples). Crucially, critical pedagogy asserts that such development can only emerge through engagement and struggle over institutions, values, labor, subjectivity, and consciousness. This is another way of saying that the achievement of a post-capitalist commons and world-ecology can only be realized through a radical expansion and revalorization of a dynamic educational culture. At the same time, technoscience must be remobilized through critical education to construct decolonized biotechnical futures.

References

Federici, S. (2011). Feminism and the politics of the commons. The Commoner, Available at: http://www.commoner.org.uk/?p=113

