and institutions, this volume is worth reading. In particular, the foreword, introduction, the essays in the second section, and the note on sources should stimulate more research in this field. The anthology should also convince librarians to pay more attention to old scientific publications, which are often discarded now that they are available online. As James Secord puts it, “it would certainly be ironic if great library collections were dispersed or destroyed, just as we realized that in them rests the key to a new kind of history” (xiii).

LISE JAILLANT
University of Newcastle


Scholars interested in print production – particularly in the ways in which print shapes natural science – will welcome this bibliography of John Hopkins University’s exciting, recently acquired archive. The editor, Earle Havens, who is the curator of rare books and manuscripts at the university’s Sheridan Libraries, presents a full catalogue of the archive, along with essays by Hanna Roman, Simon Thode, and himself. As quickly becomes apparent, one of the reasons the collection is remarkable is for its holdings in print history as well as early science. In this vein, the volume’s two major essays follow an intriguing central theme that links developments in print technology with the history of scientific publication and scientific discovery.

The book positions the archive as a uniquely focused collection: Hinkes built his collection to represent a history of “eureka” moments – as he defined them, moments of discovery on the part of an individual seeking to understand the natural world. As the catalogue shows, the collection principally features publications of discovery, instead of textbooks or other compiled works (such as Pliny’s Naturalis Historia, for instance, are not found here). The bibliography touches on major developments in the history of modern science in both text and image, with the exception of the chemical revolution, which is briefly mentioned but not seen in the figures. The collection’s holdings are particularly strong in astronomy, physics, chemistry, and,
to a lesser extent, molecular and evolutionary biology. The sizeable collection, made up of 261 single- and multi-volume works, spans the history of science (after the publication of the Gutenberg Bible in 1455) from Aristotle’s *De Caelo* (1495) to three articles in molecular biology published in 1953: “Molecular Structure of Nucleic Acids,” by James Watson and Francis Crick; “Structure of Deoxyribonucleic Acid,” by Watson and Crick; and “Helical Structure of Crystalline Deoxypentose Nucleic Acid,” by Maurice Wilkins et al.

In the essays, scrupulous attention is given to the states of the copies held in the collection, often with corresponding full-colour digital images. Thomas Aquinas’s scholarly commentary on Aristotle is shown in several full-page illustrations. Nicolaus Copernicus’s *De Revolutionibus Orbium Coelestium* (1566), held as a unique state copy, is a particularly significant volume. As Havens also outlines, a copy of Alessandro Piccolomini’s *De la Sfera del Mondo* (1540) shows detailed marginalia that remains to be analyzed. Through generous email correspondence on the substantive annotations in the collection of Prutenic Tables, Havens has confirmed that these annotations, which include specific reference to Tycho Brahe on the title-page, remain to be studied as well.

Attention is paid to works in the collection that speak to each other. To portray the dynamic surrounding Galileo’s contentious theory of heliocentrism, Havens describes works that contributed to the argument for heliocentrism alongside works that opposed it. In their essay, Roman and Thode analyze Newton’s influence through several responses, translations, and editions of his work. Newton’s letter to the Royal Society regarding optical properties and the first edition of Newton’s *Principia Mathematica* (1687) are presented together with responses from Voltaire and Lavoisier, and the French edition of *Opticks* (1722).

By referencing developments in the technology of moveable type, the essays contextualize the milestones in natural historical study represented by the collection’s holdings. For example, Havens reads a medieval printing of Aristotle’s *De Caelo* alongside two other items in the collection’s holdings: a leaf from the Gutenberg Bible, and Hartmann Schedel’s Nuremberg Chronicle, *Liber Chronicarum* (1493). Colour reproductions, many a full page in size, demonstrate the materiality of these remarkable works. Doppelmayr’s atlas, reproduced on the front and back covers, shows the beauty of these earliest published scientific works. Further, the essays in *The Hinkes Collection* emphasize the scientific community that arose because of
the possibilities for disseminating ideas made available by new forms of print.

As the book amply demonstrates, the materiality of scientific publication, primarily the increase in publication during the Renaissance and the advent of new printing methods in the nineteenth century, influenced the dynamics of scientific enquiry. In Havens’s essay, the scientific revolution itself seems to have been made possible by the increased output of printed works in the Renaissance. Roman and Thode chronicle the movement from book to article in the late nineteenth century, when the speed of scientific publication increased due to a shorter print time and a decrease in the required word length of articles. The opportunities for peer review and for the widespread communication of ideas during this period are clearly linked to this change in medium, and major period developments in scientific research, such as the discovery of radioactivity and electromagnetism, are shown to have progressed in part due to the expansion of scientific publication. However, the discussion of the medium of journal publication is comparatively general, and specific examples of the earliest journals themselves, together with dates of inception, would have been helpful here. Within the collection itself, the history of the scientific article is well represented. Although Hinkes did not leave an account of his method of collection, the reader may speculate that Hinkes’s use of articles in his professional life as a physician accounts for his notable interest in early versions of the scientific article. For example, he chose to acquire copies of Newton’s papers, read before the Royal Society, over Newton’s book-length treatises.

Though the essays create a narrative treating select significant works from the archive, the authors do not provide consecutive historical descriptions of the works in the collection, an omission that extends, more significantly, to the bibliography itself. While the alphabetical arrangement is useful, due to the diachronic development of the field of science, a list ordered by date would have been helpful to show the collection’s remarkable range to full effect. A short, chronological overview of all the works might have been helpful also. The clearest historical demarcation is between the essays, which are divided into pre-Newtonian and post-Newtonian. In addition to the complete bibliographical list of works in the collection, there is a list of illustrations, but there is no index. The layout and design are excellent, despite a few typographical errors (Aristotle’s De Caelo is spelled De Celo in the bibliography, and there is a missing s in “Newton’s” on line four, page 47). Insofar as scholars and students
are interested in visiting the collection, the volume is indispensable, and the essays will also prove useful to those interested in a general overview of the history of science from the late fifteenth century to the mid-twentieth century.

ELIZABETH BERNATH

University of Toronto


In this timely volume, Simon Frost compellingly suggests that a published novel embodies and represents the commercial processes that have brought it into existence, and that these processes can be analyzed for what they say about the book’s economic and historical milieu. While Osteen and Woodmansee’s *New Economic Criticism* shows the connections between literature and economics, Frost draws upon the history of material production and the experiences of everyday readers to determine how these readers viewed texts as goods. Furthermore, Frost points out the connections between economics and aesthetics in George Eliot’s *Middlemarch* which, as he makes clear in the introduction, stands apart from other works of the Victorian era in important ways, namely, that the work was, and continues to be, regarded as a “great work of art” (2) and that it remains marketable to various audiences because of the efforts of its author, publisher, and agent. Following William St. Clair’s “commercial-led model,” which acknowledges that authors, publishers, agents, and readers, among others, are part of a consumer economy which dictates the circulation of commodities, Frost considers how the alliance among Eliot, Lewes, and Blackwood led to a creative and more cheaply priced distribution of *Middlemarch* as eight book-length parts.

The first two chapters assess the supply side of the book trade by focusing on how authors, publishers, and agents work in concert to produce texts. As the title of the first chapter, “Coordination of Economic and Aesthetic Practices,” suggests, the relationship between George Eliot and the publishing house of Blackwood and Sons cannot be seen as simply economic, in the sense that the publisher was only responsible for turning Eliot’s novels into marketable products,